Закон Джоуля — Ленца. Тепловой закон джоуля-ленца

Физический закон, оценивающий тепловое действие электрического тока. Закон Джоуля-Ленца открыт в 1841 году Джеймсом Джоулем и в 1842 году, совершенно независимо Эмилием Ленцем.


как мы уже знаем, при движении свободных электронов по проводнику, должен преодолеть сопротивление материала. Во время этого движения зарядов происходят постоянные столкновения атомов и молекул вещества. При этом энергия движения и сопротивления превращается в тепловую. Ее зависимость от тока была впервые описана двумя независимыми учеными Джеймсом Джоулем и Эмилем Ленцем. Поэтому закон и получил двойное название.

Определение , количество теплоты, выделившееся за единицу времени на конкретном участке электрической цепи прямо пропорционально произведению квадрата силы тока на данном участке и его сопротивлению.

Математически, формулу можно записать так:

Q = а×I 2 ×R×t

где Q – количество вырабатываемой теплоты, а – коэффициент тепла (обычно он берется равным 1 и не учитывается), I – сила тока, R – сопротивление материала, t – время протекания тока по проводнику. Если коэффициент теплоты а = 1 , то Q измеряться в джоулях. Если же а = 0,24 , то Q измеряется в малых калориях.

Любой проводник всегда нагревается, если через него течет ток. Но перегрев проводников очень опасен, т.к может повредите не только электронную аппаратуру, но и стать причиной пожара. Так например, в случае короткого замыкания перегрев материала проводника огромен. Поэтому для защиты от коротких замыканий и больших перегревов в электронные схемы добавляются специальные радиокомпоненты - плавкие предохранители . Для их изготовления используется материала, который быстро плавятся и обесточивают питающую цепь при достижении током максимальных значений. Плавкие предохранители необходимо выбирать в зависимости от площади сечения проводника.

Закон Джоуля-Ленца актуален как для постоянного, так и для переменного тока. Согласно нему работает множество различных нагревательных устройств. Ведь, чем тоньше проводник, тем больший ток по нему проходит за более большой промежуток времени, тем больше количество тепла выделиться в результате этого.

Я надеюсь вы помните помнить, что сила тока зависит от напряжения. Появляется вопрос, почему ноутбук не нагревается так сильно как утюг? Потому, что в основании имеется спиральная проволока изготовленная из стали, которая отличается низкой сопротивляемостью. Плюс стальная подошва, поэтому утюг разогревается до высоких температур, и мы можем им гладить.

А имеет стабилизатор напряжения, который понижает 220 вольт до 19 вольт. Плюс сопротивление всех схем и компонентов достаточно высокое. Дополнительно для охлаждение имеется кулер и медные тепловые радиаторы.

Работа закона Джоуля-Ленца хорошо просматривается на практике. Самый известный пример его применения – обыкновенная лампа накаливания или , в которой свечение нити осуществляется благодаря прохождению по ней тока под высоким напряжением.

На основании закона Джоуля-Ленца работает и , где создание сварного соединения совершается путем нагрева металла, за счет проходящего через него тока и деформации свариваемых частей путем сжатия.

Электродуговая сварка, также работает на физических принципах закон Джоуля-Ленца. Для совершения сварочных работ электроды разогревают до такого состояния, чтобы между ними возникла сварочная дуга. Эффект вольтовой дуги открыл русский ученый В.В. Петров, используя принципы закрна Джоуля-Ленца.

Кроме математической формулы, этот закон имеет и дифференциальную форму. Предположим, что по неподвижному проводнику течет ток и вся его работа тратится только на нагревание. Тогда, согласно закону сохранения энергии, получаем следующее математическое выражение.

В XIX веке независимо друг от друга, англичанин Дж.Джоуль и россиянин Э.Х.Ленц изучали нагревание проводников электрическим током и опытным путём установили закономерность: количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.
Позднее было выяснено, что это утверждение справедливо для любых проводников: твёрдых, жидких, газообразных. Поэтому открытая закономерность получила название закон Джоуля-Ленца:

На рисунке показана схема установки, при помощи которой можно экспериментально проверить закон Джоуля-Ленца. Разделив силу тока на напряжение, по формуле R=U/I вычисляют сопротивление. Термометром измеряют повышение температуры воды. По формулам Q=I2Rt и Q=cm D вычисляют количества теплот, которые по результатам опыта должны совпадать.
Для тех, кто интересуется физикой более глубоко, специально заметим, что закон Джоуля-Ленца можно получить не только экспериментально, но и вывести теоретическим путём. Сделаем это.


Полученная формула A=I2Rt похожа на формулу закона Джоуля-Ленца, однако в левой её части стоит работа тока, а не количество теплоты. Что даёт нам право считать эти величины равными? Запишем первый закон термодинамики (см. § 6-з) и выразим из него работу:
D U = Q + A , следовательно, A = D U - Q .
Вспомним, что D U - это изменение внутренней энергии нагреваемого током проводника; Q - количество теплоты, отданное проводником (на это указывает знак «-» впереди); A - работа, совершённая над проводником. Выясним, что это за работа.
Сам проводник неподвижен, но внутри него движутся электроны, постоянно наталкиваясь на ионы кристаллической решётки и передавая им часть своей кинетической энергии. Чтобы поток электронов не ослабевал, над ними постоянно совершают работу силы электрического поля, создаваемого источником электроэнергии. Поэтому A - работа сил электрического поля по перемещению электронов внутри проводника.
Обсудим теперь величину D U (изменение внутренней энергии) применительно к проводнику, в котором начинает течь ток.
Проводник будет постепенно нагреваться, значит, его внутренняя энергия будет увеличиваться. По мере нагрева будет возрастать разность между температурами проводника и окружающей среды. Согласно закономерности Ньютона (см. § 6-к), будет возрастать мощность теплоотдачи проводника. Через некоторое время это приведёт к тому, что температура проводника перестанет увеличиваться. С этого момента внутренняя энергия проводника перестанет изменяться , то есть величина D U станет равной нулю.
Тогда первый закон термодинамики для этого состояния будет: A = -Q. То есть если внутренняя энергия проводника не меняется, то работа тока полностью превращается в теплоту. Используя этот вывод, запишем все три формулы для вычисления работы тока в другом виде:

Эти формулы мы пока будем считать равноправными. Позднее мы обсудим, что правая формула справедлива всегда (поэтому она и носит название закона), а две левых - только при определённых условиях, которые мы сформулируем при изучении физики в старших классах.

Передача электричества во время движения тока в другую энергию происходит на молекулярном уровне. Во время подобного процесса температура проводника повышается на определенную величину. описывает данное явление взаимодействия атомов и ионов токопроводника с электронами тока.

Свойства электроэнергии

Во время движения по проводнику из металла наблюдается сталкивание электронов с множеством хаотично расположенных посторонних частиц. Периодически в результате соприкосновения из нейтральной молекулы выделяются новые электроны. Происходит образование из молекулы положительного иона, а в электроне пропадает кинетическая энергия. Иногда встречается и второй вариант – образование молекулы нейтрального вида благодаря соединению положительного иона и электрона.

Все эти процессы сопровождаются расходованием определенного количества энергии, превращающейся далее в тепло. Преодоление сопротивления в ходе всех этих движений определяет затраты энергии и превращение работы, необходимой для этого, в тепло.

Параметры R идентичны показателям стандартного сопротивления. В той или иной степени в тепло преобразуется какой-то объем энергии при прохождении тока через любой проводник. Именно такое превращение рассматривается законом Джоуля-Ленца.

Формула и ее составляющие

Переход во внутреннюю энергию проводника результатов работы тока подтвержден многочисленными опытами. После накопления критического объема выполняется отдача избытка энергии окружающим телам с нагреванием проводника.

Классическая формула расчетов для данного явления:

Берем Q для обозначения количества выделяемой теплоты и подставляем его вместо А. Теперь в получившемся выражении Q= U*I*t заменяем U=IR и выводим классическую формулу Джоуля-Ленца:

В схемах с последовательным соединением для расчетов использование этой основной формулы будет самым удобным методом. В этом случае во всех проводниках сила тока всегда остается одинаковой. Выделенный объем тепла пропорционален сопротивлению каждого из имеющихся проводников.

А вот при параллельном подключении одинаковым будет напряжение на концах, а номинальное значение электротока в каждом элементе существенно отличается. Можно утверждать, что имеется обратная пропорциональность между количеством теплоты и проводимостью отдельно взятого проводника. Здесь более уместной становится формула:

Q = (U2/R)t

Практические примеры явления теплового действия тока

Многие исследователи и ученые занимались изучением особенностей протекания электричества. Но наиболее впечатляющие результаты получили российский ученый Эмилий Христианович Ленц и англичанин Джеймс Джоуль. Независимо друг от друга был сформулирован закон, с помощью которого производилась оценка получаемого в процессе действия электричества на проводник тепла. Итоговое выражение получило название в честь его авторов.

На нескольких примерах можно уяснить природу и характеристики теплового воздействия тока.

Обогревательные приборы

Функцию нагревания в конструкции подобных устройств выполняет металлическая спираль. При необходимости нагрева воды важно соблюсти баланс между параметрами сетевой энергии и тепловым обменом. Установка спирали выполняется изолировано.

Различными способами решаются задачи по минимизации потерь энергии. Один из вариантов – повышение напряжение, но он чреват снижением уровня эксплуатационной безопасности линий.

Применяется и методика подбора проводов, потери тепла в которых зависят от свойств различных металлов и сплавов. Изготовление спиралей выполняется из предназначенных для работы с высокими нагрузками материалов.

Лампа накаливания

Открытие закона Джоуля-Ленца способствовало быстрому прогрессу электротехники. Особенно показательным остается пример его использования для осветительных элементов.

Внутри подобной лампочки протягивается нить из вольфрама. Весь процесс основан на высоком удельном сопротивлении и тугоплавкости этого металла.

Трансформация энергии в тепловую вызывает эффект нагревания и свечения спирали. Минусом всегда остается расходование основного объема энергии на нагревание, а само свечение выполняется за счет ее небольшой части.

Для более точного понимания данного процесса вводится такое понятие, как коэффициент полезного действия, с помощью которого определяется эффективность рабочего процесса.

Электрическая дуга

В этом случае мы говорим о мощном источнике света и способе сваривания конструкций из металла.

Принцип протекания подобного процесса – подключение к паре угольных стержней источника тока большой мощности и минимального напряжения с последующим контактом этих элементов.

Бытовые предохранители

При использовании электроцепей применяются специальные устройства. Главным элементом в таких предохранителях будет легкоплавкая проволока. Она вкручена в фарфоровом корпусе, который вставляется в патрон.

Являясь частью общей цепи, такой проводник при резком возрастании выделения тепла плавится и размыкает сеть.

Физика 8 класс: закон Джоуля-Ленца

Подробное изучение прохождения электричества по проводнику и происходящего при этом нагревания изложено в школьной программе. На практических примерах показаны все нюансы, влияющие на величину теплового действия тока.

План проведения учебного занятия обычно строится по следующей схеме:

  1. Необходимые, для демонстрации зависимости объема тепла от сопротивления и силы тока, опыты.
  2. Детальное изучение закона Джоуля-Ленца, его основной формулы и значения всех ее составляющих.
  3. Исторические факты, исключающие вероятность плагиата со стороны обоих авторов.
  4. Подведение общих итогов урока.
  5. Практическое применение для выполнения расчетов.
  6. Решение задач на основе полученной информации.

Закрепление материала происходит во время выполнения домашних заданий по оценке количества тепла, выделяемого в ходе протекания тока по проводнику с обозначенными параметрами.

Довольно трудно представить жизнь современного человека без электричества. Оно стало одним из главных и самых ценных атрибутов современного существования. Фактически любой человек, который когда-либо работал с электричеством, знает, что при прохождении по проводам тока у них есть свойство нагреваться. Отчего же это зависит?

Что такое ток

Ток - это упорядоченное движение заряженных частиц, которые называются электронами. И если ток протекает по проводнику, то в нём начинают происходить разные физические процессы, а именно сталкиваются электроны с молекулами.

Молекулы бывают нейтральные или те, которые потеряли свою отрицательно заряженную частицу. В результате столкновений или электроны могут становиться нейтральными молекулами, или при этом выбивается из другой такой же молекулы электрон, образовавший положительно заряженный ион. Во время этих столкновений расходуется кинетическая энергия заряженных частиц. Именно эта энергия и становится теплом.

На тепловой нагрев проводника может влиять и сопротивление. Например, можно взять определённое тело и тащить его по земле. Земля в этом случае - сопротивление. Что же с ним будет? Правильно, между телом и поверхностью будет происходить сила трения, которая, в свою очередь, нагревает тело. Ток в этом случае ведёт себя точно так же.

Зависимость

И, внимая все вышеупомянутое, учёным удалось определить эту зависимость между силой тока, сопротивлением и количеством тепла. Эта зависимость носит название закон Джоуля-Ленца, формула которого известна всем физикам. В 1832—1833 годах русским физиком Эмилием Ленцем было обнаружено, что при тепловом воздействии на металлические проводники их проводимость капитально изменялась. Это фактически усложняло работу учёного и мешало рассчитывать электрические цепи.

Тогда же молодому учёному пришла в голову мысль о том, что, возможно, существует какая-то зависимость между силой тока и температурой проводника. Но как быть? В то время отсутствовали точные электрические приборы, позволяющие измерить силу тока, сопротивление, не было даже источника стабильного ЭДС. Ленца это не остановило, он решил провести опыт.

Опыты русского физика

Суть этого опыта была настолько проста, как и все гениальное, что его может повторить даже школьник. Учёный сконструировал специальный прибор, который служил для измерения количества тепла, выделяемого проводником. Этим прибором оказался обычный сосуд, вовнутрь которого Ленц заливал раствор разбавленного спирта и ставил проводник - платиновую проволоку, на которую подавался электрический ток.

После того как прибор был создан, учёный начал проводить опыты. Он измерял точное количество времени, необходимое для того, чтобы спирт в сосуде был нагрет до 10 о С. На это было потрачено много не только месяцев, но и лет. И в 1843 году, спустя 10 лет, был опубликован закон, суть которого заключалась в том, что нагревание проводника током пропорционально квадрату служащего для нагревания тока.

Джоуль и Ленц

Но не тут-то было! Оказывается, несколько лет назад английский физик Джеймс Прескотт Джоуль проводил аналогичные опыты, и уже опубликовал свои наблюдения. Как быть? Ленц не сдался и внимательно изучил работу Джоуля и пришёл к выводу, что, пусть они и проводили одинаковые эксперименты, опыты Ленца были гораздо точнее. В связи с чем научное сообщество добавило к работе Джоуля поправки Ленца и этот закон стал называться как закон Джоуля-Ленца. Математическая формулировка закона выглядит таким образом:

Q = I *U*t, где:

  • I - сила тока, А;
  • U - напряжение, В;
  • t - время, которое ток затрачивает на прохождение проводника, с.

Сам же закон звучит так: количество тепловой энергии, выделяемой в проводнике, через который течёт электрический ток, равно произведению силы тока, напряжения и времени прохождения тока через проводник.

Закон Ома

Однако будет ли всегда верным это утверждение? Можно попробовать вывести его, используя закон Ома. Судя по нему U = I*R, где R - сопротивление, Ом.

Учитывая закон Ома, можно подставить значение в формулу Q = I*U*t = I 2 *R*t. Из этого можно сделать вывод, что количество теплоты напрямую зависит и от сопротивления проводника. Также для закона Джоуля-Ленца будет справедливо и это утверждение: I = Q = I*U*t.

Все три формулы будут верны, однако Q = I 2 *R*t будет верной для любых ситуаций. Две другие тоже являются правильными, однако при определённых обстоятельствах.

Проводники

Теперь о проводниках. Изначально в своих опытах Джоуль и Ленц использовали платиновые проволоки, как и было упомянуто выше. Во всех похожих экспериментах учёные того времени использовали в основном металлические проводники, так как они были довольно недорогими и стабильными. Не удивительно, ведь до сих пор металлические проводники - основной тип проводников, в связи с чем изначально считалось, что закон Джоуля-Ленца был применим только к ним. Однако чуть позже было обнаружено, что этот закон применим не только к металлическим проводникам. Он верен для любых из них. Сами проводники по классификации можно разделить на:

  • Металлические (медь, железо, серебро и т.д.). Главную роль в них играют отрицательно заряженные частицы (электроны), которые протекают по проводнику.
  • Жидкие. В них же за движение зарядов отвечают ионы - это атомы, в которых или слишком много, или слишком мало электронов.
  • Газообразные. В отличие от своих коллег, в таких проводниках ток определяется движением как ионов, так и электронов.

И несмотря на различия, в любом случае при увеличении силы тока или сопротивления увеличится и количество тепла.

Применение закона другими физиками

Открытие закона Джоуля-Ленца сулило огромные перспективы. Ведь, по сути, этот закон позволил создавать своего рода разные электронагревательные приборы и элементы. Например, чуть позже после открытия закона учёные заметили, что при нагревании определённых элементов они начинают светиться. Они захотели поэкспериментировать с ними, используя разные проводники, и в 1874 году русский инженер Александр Николаевич Лодыгин изобрёл современную лампу накаливания, нить которой была сделана из вольфрама.

Применяется закон Джоуля-Ленца и в электротехнике - например, при создании плавких предохранителей. Плавкий предохранитель - это некий элемент электрический цепи, конструкция которого сделана так, что при протекании по нему тока выше допустимого значения (например, при коротком замыкании) он перегревается, плавится и размыкает силовую цепь. Даже обычный электрический чайник или микроволновая печь, которая есть фактически у каждого, работает согласно этому закону.

Заключение

Довольно трудно определить вклад этих учёных в современную электронику и электротехнику, но одно можно сказать точно - появление закона Джоуля-Ленца перевернуло представление людей об электричестве и дало более конкретные знания о том, что такое электрическое поле в проводнике с током.

Без сомнения, открытый этими великими учеными-физиками закон стал определяющей ступенью во всей науке, именно благодаря этому открытию впоследствии были совершены другие более или менее грандиозные достижения других ученых. Вся наука представляет собой тесное переплетение открытий, каких-то разрешенных и неразрешенных задач. Рассмотренный в этой статье закон определенным образом повлиял на многие исследования и оставил неизгладимый и вполне отчетливый след в науке.

Энциклопедичный YouTube

    1 / 3

    Урок 254. Закон Джоуля-Ленца. Работа и мощность электрического тока

    Закон Джоуля-Ленца. Часть 1

    Урок 255. Задачи на работу и мощность электрического тока

    Субтитры

Определения

В словесной формулировке звучит следующим образом

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля

Математически может быть выражен в следующей форме:

w = j → ⋅ E → = σ E 2 {\displaystyle w={\vec {j}}\cdot {\vec {E}}=\sigma E^{2}}

где w {\displaystyle w} - мощность выделения тепла в единице объёма, j → {\displaystyle {\vec {j}}} - плотность электрического тока , E → {\displaystyle {\vec {E}}} - напряжённость электрического поля , σ - проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах :

В интегральной форме этот закон имеет вид

d Q = I 2 R d t {\displaystyle dQ=I^{2}Rdt} Q = ∫ t 1 t 2 I 2 R d t {\displaystyle Q=\int \limits _{t_{1}}^{t_{2}}I^{2}Rdt}

где dQ - количество теплоты, выделяемое за промежуток времени dt , I - сила тока, R - сопротивление, Q - полное количество теплоты, выделенное за промежуток времени от t 1 до t 2 . В случае постоянных силы тока и сопротивления:

Q = I 2 R t {\displaystyle Q=I^{2}Rt}

А применяя закон Ома можно получить следующие эквивалентные формулы:

Q = V 2 t / R = I V t {\displaystyle Q=V^{2}t/R\ =IVt}

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно , значит ток в сети I {\displaystyle I} на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Q w = R w ⋅ I 2 {\displaystyle Q_{w}=R_{w}\cdot I^{2}} Q c = V c ⋅ I {\displaystyle Q_{c}=V_{c}\cdot I}

Откуда следует, что Q w = R w ⋅ Q c 2 / V c 2 {\displaystyle Q_{w}=R_{w}\cdot Q_{c}^{2}/V_{c}^{2}} . Так как в каждом конкретном случае мощность нагрузки и сопротивление проводов остаются неизменными и выражение R w ⋅ Q c 2 {\displaystyle R_{w}\cdot Q_{c}^{2}} является константой, то тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе. Повышая напряжение мы снижаем тепловые потери в проводах. Это, однако, снижает электробезопасность линий электропередачи .

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.